Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8-xSmxSr0.2MnO3 (0 < x < 0.45) manganites

Identifieur interne : 000A56 ( Main/Repository ); précédent : 000A55; suivant : 000A57

Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8-xSmxSr0.2MnO3 (0 < x < 0.45) manganites

Auteurs : RBID : Pascal:13-0350831

Descripteurs français

English descriptors

Abstract

Structural, magnetic, and electrical properties of the La0.8-xSmxSr0.2MnO3 (0 ≤ x ≤ 0.45) manganites prepared by a solid-state reaction technique was studied systematically. It was found that with increase in the Sm content, the crystal structure transformed from rhombohedral (x < 0.3 samples) to orthorhombic (x > 0.3 samples). The ac magnetic susceptibility measurements show that all samples undergo a transition from paramagnetic (PM) to ferromagnetic (FM) phase at the Curie temperature, TC, which decreases from 296 K down to 165 K with increase in the Sm doping level from x = 0 to x = 0.45. In addition, the glassy state exists in the x = 0.15-0.45 samples, which is stronger in higher doped compounds (x = 0.30 and x = 0.45). This behavior indicates that the substitution of Sm weakens the double exchange (DE) process. The field dependence of magnetization for the samples shows a soft FM nature with a small hysteresis loop and a low coercive field, Hc, for the doped samples. The irreversibility in the magnetization for increasing and decreasing the applied field is due to the glassy behavior observed in highly doped samples. The temperature dependence of resistivity, ρ(T), measurement indicates that by increasing the Sm doping level, the metal-insulator transition temperature decreases, and the heavily doped samples become insulators. The metallic region of the ρ(T) curve for the x = 0-0.10 samples was fitted with the model of electron-electron and electron-magnon scattering, while the insulating region was fitted with the small polaron hopping (SPH) at T > θD/2 (θD, Debye temperature) and the variable range hopping (VRH) models at T < θD/2.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0350831

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of Sm-doping on the structural, magnetic, and electrical properties of La
<sub>0.8-x</sub>
Sm
<sub>x</sub>
Sr
<sub>0.2</sub>
MnO
<sub>3</sub>
(0 < x < 0.45) manganites</title>
<author>
<name sortKey="Ehsani, M H" uniqKey="Ehsani M">M. H. Ehsani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Semnan University</s1>
<s2>Semnan 35195-363</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Semnan 35195-363</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kameli, P" uniqKey="Kameli P">P. Kameli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Isfahan University of Technology</s1>
<s2>Isfahan 84156-8311</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Isfahan 84156-8311</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Razavi, F S" uniqKey="Razavi F">F. S. Razavi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Brock University</s1>
<s2>St. Catharines L2S 3A1</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>St. Catharines L2S 3A1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghazi, M E" uniqKey="Ghazi M">M. E. Ghazi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, Shahrood University of Technology</s1>
<s2>Shahrood 36155-316</s2>
<s3>IRN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Shahrood 36155-316</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aslibeiki, B" uniqKey="Aslibeiki B">B. Aslibeiki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Isfahan University of Technology</s1>
<s2>Isfahan 84156-8311</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Isfahan 84156-8311</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0350831</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0350831 INIST</idno>
<idno type="RBID">Pascal:13-0350831</idno>
<idno type="wicri:Area/Main/Corpus">000527</idno>
<idno type="wicri:Area/Main/Repository">000A56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coercive force</term>
<term>Crystal structure</term>
<term>Debye temperature</term>
<term>Doping</term>
<term>Double exchange</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron magnon interaction</term>
<term>Electron-electron interactions</term>
<term>Exchange interactions</term>
<term>Ferromagnetism</term>
<term>Glass</term>
<term>Hopping conduction</term>
<term>Hysteresis loop</term>
<term>Indium additions</term>
<term>Irreversible processes</term>
<term>Low field</term>
<term>Magnetic measurement</term>
<term>Magnetic properties</term>
<term>Magnetic susceptibility</term>
<term>Magnetization</term>
<term>Metal-insulator transition</term>
<term>Orthorhombic lattices</term>
<term>Small polaron</term>
<term>Solid state reaction</term>
<term>Temperature dependence</term>
<term>Trigonal lattices</term>
<term>Vitreous state</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Propriété magnétique</term>
<term>Propriété électrique</term>
<term>Réaction état solide</term>
<term>Structure cristalline</term>
<term>Réseau rhomboédrique</term>
<term>Réseau orthorhombique</term>
<term>Susceptibilité magnétique</term>
<term>Mesure magnétique</term>
<term>Ferromagnétisme</term>
<term>Dépendance température</term>
<term>Addition indium</term>
<term>Etat vitreux</term>
<term>Interaction échange</term>
<term>Verre</term>
<term>Double échange</term>
<term>Aimantation</term>
<term>Cycle hystérésis</term>
<term>Champ faible</term>
<term>Force coercitive</term>
<term>Champ coercitif</term>
<term>Processus irréversible</term>
<term>Conductivité électrique</term>
<term>Transition métal isolant</term>
<term>Interaction électron électron</term>
<term>Interaction électron magnon</term>
<term>Petit polaron</term>
<term>Température Debye</term>
<term>Conduction saut</term>
<term>6166</term>
<term>8105K</term>
<term>7130</term>
<term>7530C</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Structural, magnetic, and electrical properties of the La
<sub>0.8-x</sub>
Sm
<sub>x</sub>
Sr
<sub>0.2</sub>
MnO
<sub>3</sub>
(0 ≤ x ≤ 0.45) manganites prepared by a solid-state reaction technique was studied systematically. It was found that with increase in the Sm content, the crystal structure transformed from rhombohedral (x < 0.3 samples) to orthorhombic (x > 0.3 samples). The ac magnetic susceptibility measurements show that all samples undergo a transition from paramagnetic (PM) to ferromagnetic (FM) phase at the Curie temperature, T
<sub>C</sub>
, which decreases from 296 K down to 165 K with increase in the Sm doping level from x = 0 to x = 0.45. In addition, the glassy state exists in the x = 0.15-0.45 samples, which is stronger in higher doped compounds (x = 0.30 and x = 0.45). This behavior indicates that the substitution of Sm weakens the double exchange (DE) process. The field dependence of magnetization for the samples shows a soft FM nature with a small hysteresis loop and a low coercive field, H
<sub>c</sub>
, for the doped samples. The irreversibility in the magnetization for increasing and decreasing the applied field is due to the glassy behavior observed in highly doped samples. The temperature dependence of resistivity, ρ(T), measurement indicates that by increasing the Sm doping level, the metal-insulator transition temperature decreases, and the heavily doped samples become insulators. The metallic region of the ρ(T) curve for the x = 0-0.10 samples was fitted with the model of electron-electron and electron-magnon scattering, while the insulating region was fitted with the small polaron hopping (SPH) at T > θ
<sub>D</sub>
/2 (θ
<sub>D</sub>
, Debye temperature) and the variable range hopping (VRH) models at T < θ
<sub>D</sub>
/2.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>579</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of Sm-doping on the structural, magnetic, and electrical properties of La
<sub>0.8-x</sub>
Sm
<sub>x</sub>
Sr
<sub>0.2</sub>
MnO
<sub>3</sub>
(0 < x < 0.45) manganites</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EHSANI (M. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KAMELI (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAZAVI (F. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GHAZI (M. E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ASLIBEIKI (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Semnan University</s1>
<s2>Semnan 35195-363</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Isfahan University of Technology</s1>
<s2>Isfahan 84156-8311</s2>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Brock University</s1>
<s2>St. Catharines L2S 3A1</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Shahrood University of Technology</s1>
<s2>Shahrood 36155-316</s2>
<s3>IRN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>406-414</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000505896890670</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>73 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0350831</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Structural, magnetic, and electrical properties of the La
<sub>0.8-x</sub>
Sm
<sub>x</sub>
Sr
<sub>0.2</sub>
MnO
<sub>3</sub>
(0 ≤ x ≤ 0.45) manganites prepared by a solid-state reaction technique was studied systematically. It was found that with increase in the Sm content, the crystal structure transformed from rhombohedral (x < 0.3 samples) to orthorhombic (x > 0.3 samples). The ac magnetic susceptibility measurements show that all samples undergo a transition from paramagnetic (PM) to ferromagnetic (FM) phase at the Curie temperature, T
<sub>C</sub>
, which decreases from 296 K down to 165 K with increase in the Sm doping level from x = 0 to x = 0.45. In addition, the glassy state exists in the x = 0.15-0.45 samples, which is stronger in higher doped compounds (x = 0.30 and x = 0.45). This behavior indicates that the substitution of Sm weakens the double exchange (DE) process. The field dependence of magnetization for the samples shows a soft FM nature with a small hysteresis loop and a low coercive field, H
<sub>c</sub>
, for the doped samples. The irreversibility in the magnetization for increasing and decreasing the applied field is due to the glassy behavior observed in highly doped samples. The temperature dependence of resistivity, ρ(T), measurement indicates that by increasing the Sm doping level, the metal-insulator transition temperature decreases, and the heavily doped samples become insulators. The metallic region of the ρ(T) curve for the x = 0-0.10 samples was fitted with the model of electron-electron and electron-magnon scattering, while the insulating region was fitted with the small polaron hopping (SPH) at T > θ
<sub>D</sub>
/2 (θ
<sub>D</sub>
, Debye temperature) and the variable range hopping (VRH) models at T < θ
<sub>D</sub>
/2.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E30E</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réaction état solide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solid state reaction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Reacción estado sólido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réseau rhomboédrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Trigonal lattices</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Susceptibilité magnétique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Magnetic susceptibility</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure magnétique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Magnetic measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medida magnética</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etat vitreux</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Vitreous state</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Interaction échange</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Exchange interactions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Verre</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Glass</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Double échange</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Double exchange</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cycle hystérésis</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Hysteresis loop</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Ciclo histéresis</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Champ faible</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Low field</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Campo débil</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Champ coercitif</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Coercive force</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Campo coercitivo</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Processus irréversible</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Irreversible processes</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Transition métal isolant</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Metal-insulator transition</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Interaction électron électron</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Electron-electron interactions</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Interaction électron magnon</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Electron magnon interaction</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Interacción electrón magnón</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Petit polaron</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Small polaron</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Pequeño polarón</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Température Debye</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Debye temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Conduction saut</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Hopping conduction</s0>
<s5>42</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>7130</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>7530C</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0350831
   |texte=   Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8-xSmxSr0.2MnO3 (0 < x < 0.45) manganites
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024